doc: update readme
A Conditional Generative Adversarial Network (CGAN) implemented with Jittor, designed for conditional image generation on the MNIST dataset.
This is the warm-up problem for “第五届计图人工智能挑战赛“.
Install dependencies:
pip install jittor
To train and generate images:
python ./CGAN.py
Optional arguments (all have default values and can be set via command line):
--n_epochs
--batch_size
--lr
--latent_dim
--n_classes
--img_size
--channels
--sample_interval
Example:
python ./CGAN.py --n_epochs 200 --batch_size 128
0.png
1000.png
generator_last.pkl
discriminator_last.pkl
result.png
xxxx.png
A Jittor implementation of Conditional GAN (CGAN)
©Copyright 2023 CCF 开源发展委员会 Powered by Trustie& IntelliDE 京ICP备13000930号
CGAN-Jittor
A Conditional Generative Adversarial Network (CGAN) implemented with Jittor, designed for conditional image generation on the MNIST dataset.
Requirements
Install dependencies:
Usage
To train and generate images:
Optional arguments (all have default values and can be set via command line):
--n_epochs
: Number of training epochs (default: 100)--batch_size
: Batch size (default: 64)--lr
: Learning rate (default: 0.0002)--latent_dim
: Dimension of the noise vector (default: 100)--n_classes
: Number of classes (default: 10)--img_size
: Image size (default: 32)--channels
: Number of image channels (default: 1)--sample_interval
: Interval for saving generated images (default: 1000)Example:
Output
0.png
,1000.png
, … etc.generator_last.pkl
,discriminator_last.pkl
result.png
Dataset
Example Results
result.png
: A concatenated image of digits generated according to a preset sequence in the script.xxxx.png
show samples generated at different training stages.References