update imgs
Channel
WrappingHStack
Spring Authorization Server
pnpm monorepo
-spark
-uos
-52
.s
.o
Ublock
Adguard
llama-cli
llama.cpp
llama-server
llama-perplexity
llama-bench
llama-run
llama-simple
spaCyLayout
spaCyLayout.__init__
spaCyLayout.__call__
spaCyLayout.pipe
com.tencent.xlua
用于容纳那些不适用于课堂的功能
@MainActor
.markdownStyle()
Path.swift
URL
master
master-fetch
Logger.MetadataValue
<完结>
Identifiable
QLView
height: CGFloat
isRelativeToSafeArea: Bool
gradientColors: [UIColor]
progressAnimationDuration: TimeInterval
fadeIn(duration:completion)
fadeOut(duration:completion)
gradientColors: [Color]
progressDuration: TimeInterval
基于Jittor框架实现CGAN。CGAN的核心思路是将噪声与标签一起投入生成器,将真实图片与标签一起投入判别器,从而使生成器可以生成指定类别的图片。由于MLP与CNN都可以对图像信息进行提取,所以分别基于二者实现CGAN(基于CNN实现的CGAN也可以看作是DCGAN的变种)。实现的两种模型分别在MNIST与CIFAR10上进行训练和测试。
under common version:
common version
under platform version:
platform version
python 3.8.12
安装Jittor
# 检查python版本大于等于3.8 python --version conda install pywin32 python -m pip install jittor python -m jittor.test.test_core python -m jittor.test.test_example python -m jittor.test.test_cudnn_op
numpy 1.22.3 一些数学操作
tqdm 4.63.0 进度条
on MNIST
on CIFAR10
Copyright © 2022 Hapulus. This project is MIT licensed.
A Jittor implementation of Conditional GAN (CGAN), based on MLP and CNN(DCGAN), testing on two datasets(MNIST, CIFAR10)
CGAN _ jittor
Channel
WrappingHStack
parametersSpring Authorization Server
全特性支持及扩展pnpm monorepo
重构前端-spark
-uos
-52
(已停止支持).s
to.o
)Ublock
或者Adguard
推荐用 混合规则.s
to.o
).s
to.o
)llama-cli
llama.cpp
‘s functionality.llama-server
llama-perplexity
llama-bench
llama-run
llama.cpp
models. Useful for inferencing. Used with RamaLama ^3.llama-simple
llama.cpp
. Useful for developers.spaCyLayout
spaCyLayout.__init__
spaCyLayout.__call__
spaCyLayout.pipe
com.tencent.xlua
的二次修改.s
to.o
).s
to.o
)用于容纳那些不适用于课堂的功能
:@MainActor
from a nonisolated context.markdownStyle()
Path.swift
is robustPath.swift
is properly cross-platformURL
s?master
master-fetch
Logger.MetadataValue
<完结>
<完结>
Identifiable
managed objectsQLView
Elementsheight: CGFloat
isRelativeToSafeArea: Bool
gradientColors: [UIColor]
progressAnimationDuration: TimeInterval
fadeIn(duration:completion)
fadeOut(duration:completion)
gradientColors: [UIColor]
progressAnimationDuration: TimeInterval
gradientColors: [Color]
:progressDuration: TimeInterval
:⛵ 概述
基于Jittor框架实现CGAN。CGAN的核心思路是将噪声与标签一起投入生成器,将真实图片与标签一起投入判别器,从而使生成器可以生成指定类别的图片。由于MLP与CNN都可以对图像信息进行提取,所以分别基于二者实现CGAN(基于CNN实现的CGAN也可以看作是DCGAN的变种)。实现的两种模型分别在MNIST与CIFAR10上进行训练和测试。
🌠 文件结构
under
common version
:under
platform version
:🌆 环境配置
python 3.8.12
安装Jittor
numpy 1.22.3 一些数学操作
tqdm 4.63.0 进度条
📚 生成结果
📐 评价指标
on MNIST
on CIFAR10
🔗 参考
Copyright © 2022 Hapulus. This project is MIT licensed.