emo_lora_sd
微调脚本
PYTHONPATH=. torchrun examples/pytorch/stable_diffusion/finetune_stable_diffusion.py \
--model '/root/autodl-tmp/models/AI-ModelScope/stable-diffusion-v2-1/' \
--prompt "生成一张可爱的表情包图片" \
--work_dir '/root/autodl-tmp/models/lora_diffusion/' \
--train_dataset_name '/root/autodl-tmp/emo-visual-data/' \
--max_epochs 50 \
--lora_rank 16 \
--lora_alpha 32 \
--save_ckpt_strategy 'by_epoch' \
--logging_interval 1 \
--train.dataloader.workers_per_gpu 0 \
--evaluation.dataloader.workers_per_gpu 0 \
--train.optimizer.lr 1e-4 \
--sample_nums 10 \
--num_inference_steps 30 \
--use_model_config true
推理脚本
from modelscope.utils.constant import Tasks
from modelscope.pipelines import pipeline
import cv2
pipe = pipeline(
task=Tasks.text_to_image_synthesis,
model=model_path, # e.g. /root/autodl-tmp/models/AI-ModelScope/stable-diffusion-v2-1/
lora_dir=lora_path, # e.g. /root/autodl-tmp/models/lora_diffusion/unet/default/
use_swift=True)
prompt = '一张愤怒的猫眯表情包'
image = pipe({'text': prompt, 'num_inference_steps': 100})
cv2.imwrite(f'./lora_result.png', image['output_imgs'][0])

环境:使用了3090的显卡,24g显存
SDK下载
#安装ModelScope
pip install modelscope
#SDK模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('changmu/emo_sd_lora')
emo_lora_sd
微调脚本
推理脚本
环境:使用了3090的显卡,24g显存 SDK下载