CGAN_jittor
A Jittor implementation of Conditional GAN (CGAN).
Prerequisite
You should install Jittor before running this program. See: cg.cs.tsinghua.edu.cn/jittor/download/
Usage
python CGAN.py [arguments]
Arguments
--n_epochs
: Number of epochs of training.
--batch_size
: Size of the batches.
--lr
: Adam: learning rate.
--b1
: Adam: decay of 1st order momentum of gradient.
--b2
: Adam: decay of 2nd order momentum of gradient.
--n_cpu
: Number of cpu threads to use during batch generation.
--latent_dim
: Dimensionality of the latent space.
--n_classes
: Number of classes for dataset.
--img_size
: Size of each image dimension.
--sample_interval
: Interval between image sampling.
Outputs
result.png
: Generated figures of number
.
<n>.png
: Generated figures after <n> batches.
generator_last.pkl
: Pickle file of the latest generator.
discriminator_last.pkl
: Pickle file of the latest discriminator.
CGAN_jittor
A Jittor implementation of Conditional GAN (CGAN).
Prerequisite
You should install Jittor before running this program. See: cg.cs.tsinghua.edu.cn/jittor/download/
Usage
python CGAN.py [arguments]
Arguments
--n_epochs
: Number of epochs of training.--batch_size
: Size of the batches.--lr
: Adam: learning rate.--b1
: Adam: decay of 1st order momentum of gradient.--b2
: Adam: decay of 2nd order momentum of gradient.--n_cpu
: Number of cpu threads to use during batch generation.--latent_dim
: Dimensionality of the latent space.--n_classes
: Number of classes for dataset.--img_size
: Size of each image dimension.--sample_interval
: Interval between image sampling.Outputs
result.png
: Generated figures ofnumber
.<n>.png
: Generated figures after <n> batches.generator_last.pkl
: Pickle file of the latest generator.discriminator_last.pkl
: Pickle file of the latest discriminator.