目录
目录README.md

CGAN_jittor

A Jittor implementation of Conditional GAN (CGAN).

Prerequisite

You should install Jittor before running this program. See: cg.cs.tsinghua.edu.cn/jittor/download/

Usage

python CGAN.py [arguments]

Arguments

  • --n_epochs: Number of epochs of training.
  • --batch_size: Size of the batches.
  • --lr: Adam: learning rate.
  • --b1: Adam: decay of 1st order momentum of gradient.
  • --b2: Adam: decay of 2nd order momentum of gradient.
  • --n_cpu: Number of cpu threads to use during batch generation.
  • --latent_dim: Dimensionality of the latent space.
  • --n_classes: Number of classes for dataset.
  • --img_size: Size of each image dimension.
  • --sample_interval: Interval between image sampling.

Outputs

  • result.png: Generated figures of number.
  • <n>.png: Generated figures after <n> batches.
  • generator_last.pkl: Pickle file of the latest generator.
  • discriminator_last.pkl: Pickle file of the latest discriminator.
关于

A Jittor implementation of Conditional GAN (CGAN).

29.0 KB
邀请码
    Gitlink(确实开源)
  • 加入我们
  • 官网邮箱:gitlink@ccf.org.cn
  • QQ群
  • QQ群
  • 公众号
  • 公众号

©Copyright 2023 CCF 开源发展委员会
Powered by Trustie& IntelliDE 京ICP备13000930号