JoyRL is a parallel reinforcement learning library based on PyTorch and Ray. Unlike existing RL libraries, JoyRL is helping users to release the burden of implementing algorithms with tough details, unfriendly APIs, and etc. JoyRL is designed for users to train and test RL algorithms with only hyperparameters configuration, which is mush easier for beginners to learn and use. Also, JoyRL supports plenties of state-of-art RL algorithms including RLHF(core of ChatGPT)(See algorithms below). JoyRL provides a modularized framework for users as well to customize their own algorithms and environments.
Install
⚠️ Note that donot install JoyRL through any mirror image!!!
# you need to install Anaconda first
conda create -n joyrl python=3.10
conda activate joyrl
pip install -U joyrl
Torch install:
# CPU
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1
# CUDA 11.8
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu118
# CUDA 12.1
pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
Usage
Quick Start
the following presents a demo to use joyrl. As you can see, first create a yaml file to config hyperparameters, then run the command as below in your terminal. That’s all you need to do to train a DQN agent on CartPole-v1 environment.
JoyRL
JoyRL
is a parallel reinforcement learning library based on PyTorch and Ray. Unlike existing RL libraries,JoyRL
is helping users to release the burden of implementing algorithms with tough details, unfriendly APIs, and etc. JoyRL is designed for users to train and test RL algorithms with only hyperparameters configuration, which is mush easier for beginners to learn and use. Also, JoyRL supports plenties of state-of-art RL algorithms including RLHF(core of ChatGPT)(See algorithms below). JoyRL provides a modularized framework for users as well to customize their own algorithms and environments.Install
⚠️ Note that donot install JoyRL through any mirror image!!!
Torch install:
Usage
Quick Start
the following presents a demo to use joyrl. As you can see, first create a yaml file to config hyperparameters, then run the command as below in your terminal. That’s all you need to do to train a DQN agent on CartPole-v1 environment.
or you can run the following code in your python file.
Documentation
More tutorials and API documentation are hosted on JoyRL docs or JoyRL 中文文档.
Algorithms
Why JoyRL?
Here are some other highlghts of JoyRL:
Contributors
John Jim
Peking University
Qi Wang
Shanghai Jiao Tong University
Yiyuan Yang
University of Oxford