Update README.md
TsFormer is a toolbox that implement transformer models on Time series data
python -u run_autoformer.py \ --is_training 1 \ --root_path ./data/electricity/ \ --data_path electricity.csv \ --model_id ECL \ --model informer \ --data custom \ --features S \ --seq_len 96 \ --label_len 48 \ --pred_len 96 \ --e_layers 2 \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --embed fixed \ --des 'Exp' \ --itr 1 mse:0.2755982279777527, mae:0.3857262134552002,rmse:0.524974524974823, mape:1.9572646617889404, mspe:238.20448303222656
python -u run_autoformer.py \ --is_training 1 \ --root_path ./data/electricity/ \ --data_path electricity.csv \ --model_id ECL \ --model informer \ --data custom \ --features S \ --seq_len 96 \ --label_len 48 \ --pred_len 96 \ --e_layers 2 \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --embed timeF \ --des 'Exp' \ --itr 1 mse:0.22287048399448395, mae:0.3356129825115204,rmse:0.4720916152000427, mape:1.6913783550262451, mspe:260.3700866699219
python -u run_autoformer.py \ --is_training 1 \ --root_path ./data/electricity/ \ --data_path electricity.csv \ --model_id ECL \ --model transformer \ --data custom \ --features S \ --seq_len 96 \ --label_len 48 \ --pred_len 96 \ --e_layers 2 \ --d_layers 1 \ --factor 3 \ --enc_in 1 \ --dec_in 1 \ --c_out 1 \ --embed timeF \ --des 'Exp' \ --itr mse:0.284598171710968, mae:0.38772597908973694,rmse:0.5334774255752563, mape:2.1156060695648193, mspe:381.4866943359375
python -u run_autoformer.py \ --is_training 1 \ --root_path ./data/electricity/ \ --data_path electricity.csv \ --model_id ECL \ --model autoformer \ --data custom \ --features M \ --seq_len 96 \ --label_len 48 \ --pred_len 96 \ --e_layers 2 \ --d_layers 1 \ --factor 3 \ --enc_in 321 \ --dec_in 321 \ --c_out 321 \ --des 'Exp' \ --itr 1 mse:0.2043592780828476, mae:0.3170555830001831,rmse:0.45206114649772644, mape:3.2521157264709473, mspe:414847.125
©Copyright 2023 CCF 开源发展委员会 Powered by Trustie& IntelliDE 京ICP备13000930号
TsFormer
TsFormer is a toolbox that implement transformer models on Time series data
Todo
6. Custom Informer
Transformer Results
AutoFormer