# demo.py
import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
for n_iter in range(100):
dummy_s1 = torch.rand(1)
dummy_s2 = torch.rand(1)
# data grouping by `slash`
writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
'xcosx': n_iter * np.cos(n_iter),
'arctanx': np.arctan(n_iter)}, n_iter)
dummy_img = torch.rand(32, 3, 64, 64) # output from network
if n_iter % 10 == 0:
x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
writer.add_image('Image', x, n_iter)
dummy_audio = torch.zeros(sample_rate * 2)
for i in range(x.size(0)):
# amplitude of sound should in [-1, 1]
dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
for name, param in resnet18.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
# needs tensorboard 0.4RC or later
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]
features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()
Screenshots
Using TensorboardX with Comet
TensorboardX now supports logging directly to Comet. Comet is a free cloud based solution that allows you to automatically track, compare and explain your experiments. It adds a lot of functionality on top of tensorboard such as dataset management, diffing experiments, seeing the code that generated the results and more.
This works out of the box and just require an additional line of code. See a full code example in this Colab Notebook
tensorboardX
Write TensorBoard events with simple function call.
The current release (v2.6.3) is tested with PyTorch 2.6 / torchvision 0.21.0 / tensorboard 2.19.0 on Python 3.9 to 3.12
Support
scalar,image,figure,histogram,audio,text,graph,onnx_graph,embedding,pr_curve,mesh,hyper-parametersandvideosummaries.FAQ
Install
pip install tensorboardXor build from source:
pip install 'git+https://github.com/lanpa/tensorboardX'You can optionally install
crc32cto speed up.pip install crc32cStarting from tensorboardX 2.1, You need to install
soundfilefor theadd_audio()function (200x speedup).pip install soundfileExample
python examples/demo.pytensorboard --logdir runsScreenshots
Using TensorboardX with Comet
TensorboardX now supports logging directly to Comet. Comet is a free cloud based solution that allows you to automatically track, compare and explain your experiments. It adds a lot of functionality on top of tensorboard such as dataset management, diffing experiments, seeing the code that generated the results and more.
This works out of the box and just require an additional line of code. See a full code example in this Colab Notebook
Tweaks
To add more ticks for the slider (show more image history), check https://github.com/lanpa/tensorboardX/issues/44 or https://github.com/tensorflow/tensorboard/pull/1138
Reference