add edgemoe
首先,实现层次存储技术。通过修改现有代码,使非专家权重存储在设备内存中,而专家权重存储在外部存储中,仅在需要时加载到内存。实现步骤如下:
ExpertStorage
import torch import os class ExpertStorage: def __init__(self, config, storage_path): self.config = config self.storage_path = storage_path os.makedirs(storage_path, exist_ok=True) def save_expert(self, expert_id, expert_state): path = os.path.join(self.storage_path, f"expert_{expert_id}.pt") torch.save(expert_state, path) def load_expert(self, expert_id): path = os.path.join(self.storage_path, f"expert_{expert_id}.pt") return torch.load(path, map_location='cpu')
DeepseekMoE
class DeepseekMoE(nn.Module): def __init__(self, config): super().__init__() self.config = config self.num_experts_per_tok = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.gate = MoEGate(config) # 创建专家存储 self.expert_storage = ExpertStorage(config, "expert_storage") # 创建专家缓冲区 self.expert_buffer = {} # 创建非专家权重 if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = DeepseekMLP(config=config, intermediate_size=intermediate_size) def _create_expert(self): return DeepseekMLP(self.config, intermediate_size=self.config.moe_intermediate_size) def _get_expert(self, expert_id): if expert_id not in self.expert_buffer: # 如果专家不在缓冲区中,从外部存储加载 expert_state = self.expert_storage.load_expert(expert_id) expert = self._create_expert() expert.load_state_dict(expert_state) self.expert_buffer[expert_id] = expert return self.expert_buffer[expert_id] def forward(self, hidden_states): identity = hidden_states orig_shape = hidden_states.shape topk_idx, topk_weight, aux_loss = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) flat_topk_idx = topk_idx.view(-1) outputs = [] for i in range(self.n_routed_experts): mask = (flat_topk_idx == i) if mask.any(): expert = self._get_expert(i) expert_output = expert(hidden_states[mask]) outputs.append((mask, expert_output)) y = torch.zeros_like(hidden_states) for mask, expert_output in outputs: y[mask] = expert_output y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.view(*orig_shape) if self.config.n_shared_experts is not None: y = y + self.shared_experts(identity) return y
DeepseekModel
class DeepseekModel(DeepseekPreTrainedModel): def __init__(self, config: DeepseekConfig): super().__init__(config) # ...(其他初始化代码保持不变) # 初始化并存储专家 self._init_and_store_experts() def _init_and_store_experts(self): for layer in self.layers: if isinstance(layer.mlp, DeepseekMoE): for i in range(layer.mlp.n_routed_experts): expert = layer.mlp._create_expert() expert_state = expert.state_dict() layer.mlp.expert_storage.save_expert(i, expert_state) # 清除内存中的专家 layer.mlp.expert_buffer.clear() # ...(其他方法保持不变)
DeepseekForCausalLM
class DeepseekForCausalLM(DeepseekPreTrainedModel): def __init__(self, config): super().__init__(config) self.model = DeepseekModel(config) # ...(其他初始化代码保持不变) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) # 确保专家被正确初始化和存储 model.model._init_and_store_experts() return model # ...(其他方法保持不变)
这些修改实现了以下功能:
该实现提供了层次存储的基本框架。在实际应用中,可能需要进一步优化,例如:
请注意,这些更改可能会影响模型的性能和内存使用。可能需要进行进一步的测试和优化,以确保在特定用例中达到最佳性能。
接下来,实现专家位宽自适应技术。该实现包括以下几个部分:
import torch def quantize_weights(weights, bits): if bits not in [2, 4, 8]: raise ValueError("Bits must be 2, 4, or 8") # 计算量化范围 min_val, max_val = weights.min(), weights.max() scale = (max_val - min_val) / (2**bits - 1) zero_point = min_val # 量化 quantized = torch.round((weights - zero_point) / scale).clamp(0, 2**bits - 1).to(torch.int8) # 反量化(用于模拟量化效果) dequantized = scale * quantized + zero_point return quantized, scale, zero_point, dequantized
DeepseekMLP
class QuantizedDeepseekMLP(nn.Module): def __init__(self, config, hidden_size=None, intermediate_size=None): super().__init__() self.config = config self.hidden_size = hidden_size if hidden_size is not None else config.hidden_size self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] self.quantized = False self.quantization_bits = None self.quantized_weights = {} self.scales = {} self.zero_points = {} def quantize(self, bits): self.quantized = True self.quantization_bits = bits for name, param in self.named_parameters(): if 'weight' in name: quantized, scale, zero_point, _ = quantize_weights(param.data, bits) self.quantized_weights[name] = quantized self.scales[name] = scale self.zero_points[name] = zero_point def forward(self, x): if not self.quantized: return super().forward(x) def dequantize(name): return self.scales[name] * self.quantized_weights[name] + self.zero_points[name] gate_output = F.linear(x, dequantize('gate_proj.weight')) up_output = F.linear(x, dequantize('up_proj.weight')) intermediate_output = self.act_fn(gate_output) * up_output down_output = F.linear(intermediate_output, dequantize('down_proj.weight')) return down_output
import copy def adaptive_quantization(model, dataset, tolerance, initial_bits=8): original_accuracy = evaluate_model(model, dataset) print(f"Original accuracy: {original_accuracy}") quantized_experts = {} for layer_idx, layer in enumerate(model.model.layers): if isinstance(layer.mlp, DeepseekMoE): for expert_idx in range(layer.mlp.n_routed_experts): expert = layer.mlp._get_expert(expert_idx) best_bits = initial_bits best_accuracy = original_accuracy for bits in [8, 4, 2]: quantized_expert = copy.deepcopy(expert) quantized_expert.quantize(bits) # 替换原始专家进行评估 layer.mlp.expert_buffer[expert_idx] = quantized_expert accuracy = evaluate_model(model, dataset) if accuracy >= best_accuracy - tolerance: best_bits = bits best_accuracy = accuracy else: break print(f"Layer {layer_idx}, Expert {expert_idx}: Best bits = {best_bits}, Accuracy = {best_accuracy}") quantized_experts[(layer_idx, expert_idx)] = (best_bits, best_accuracy) # 恢复原始专家 layer.mlp.expert_buffer[expert_idx] = expert return quantized_experts def evaluate_model(model, dataset): # 实现模型评估逻辑,返回准确率 # 需要根据具体任务和数据集实现 pass
class DeepseekMoE(nn.Module): def __init__(self, config): # ...(其他初始化保持不变) self.quantized_bits = {} def _create_expert(self): return QuantizedDeepseekMLP(self.config, intermediate_size=self.config.moe_intermediate_size) def _get_expert(self, expert_id): if expert_id not in self.expert_buffer: expert_state = self.expert_storage.load_expert(expert_id) expert = self._create_expert() expert.load_state_dict(expert_state) if expert_id in self.quantized_bits: expert.quantize(self.quantized_bits[expert_id]) self.expert_buffer[expert_id] = expert return self.expert_buffer[expert_id] def set_quantization_bits(self, expert_id, bits): self.quantized_bits[expert_id] = bits if expert_id in self.expert_buffer: self.expert_buffer[expert_id].quantize(bits)
使用该实现,可以按以下步骤进行专家位宽自适应:
adaptive_quantization
示例:
model = DeepseekForCausalLM.from_pretrained("path_to_your_model") dataset = load_your_dataset() # 加载数据集 quantized_experts = adaptive_quantization(model, dataset, tolerance=0.01) for (layer_idx, expert_idx), (bits, accuracy) in quantized_experts.items(): model.model.layers[layer_idx].mlp.set_quantization_bits(expert_idx, bits) # 保存量化后的模型 model.save_pretrained("path_to_save_quantized_model")
该实现提供了专家位宽自适应的基本框架。在实际应用中,可能需要进一步优化和调整,例如:
请注意,该实现可能会显著增加模型的复杂性和训练/推理时间。需要根据具体需求和硬件限制权衡精度和效率。
最后,实现专家管理技术,包括以下几个部分:
import torch import torch.nn as nn class ExpertActivationPredictor(nn.Module): def __init__(self, num_layers, num_experts): super().__init__() self.predictor = nn.Linear(num_experts, num_experts) self.num_layers = num_layers def forward(self, previous_activations): return torch.sigmoid(self.predictor(previous_activations)) def train_predictor(self, activation_data): # 实现训练逻辑 pass
class DeepseekMoE(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.num_experts_per_tok = config.num_experts_per_tok self.n_routed_experts = config.n_routed_experts self.gate = MoEGate(config) self.expert_storage = ExpertStorage(config, f"expert_storage_layer_{layer_idx}") self.expert_buffer = {} self.expert_predictor = ExpertActivationPredictor(config.num_hidden_layers, self.n_routed_experts) self.max_buffer_size = config.max_expert_buffer_size self.activation_history = {} if config.n_shared_experts is not None: intermediate_size = config.moe_intermediate_size * config.n_shared_experts self.shared_experts = QuantizedDeepseekMLP(config=config, intermediate_size=intermediate_size) def _create_expert(self): return QuantizedDeepseekMLP(self.config, intermediate_size=self.config.moe_intermediate_size) def _get_expert(self, expert_id): if expert_id not in self.expert_buffer: if len(self.expert_buffer) >= self.max_buffer_size: self._evict_expert() expert_state = self.expert_storage.load_expert(expert_id) expert = self._create_expert() expert.load_state_dict(expert_state) if expert_id in self.quantized_bits: expert.quantize(self.quantized_bits[expert_id]) self.expert_buffer[expert_id] = expert return self.expert_buffer[expert_id] def _evict_expert(self): # 实现缓存逐出策略 expert_to_evict = min(self.activation_history, key=self.activation_history.get) del self.expert_buffer[expert_to_evict] del self.activation_history[expert_to_evict] def preload_experts(self, previous_activations): predicted_activations = self.expert_predictor(previous_activations) top_k_experts = predicted_activations.topk(self.num_experts_per_tok).indices for expert_id in top_k_experts: self._get_expert(expert_id.item()) def update_activation_history(self, activated_experts): for expert_id in activated_experts: if expert_id in self.activation_history: self.activation_history[expert_id] += 1 else: self.activation_history[expert_id] = 1 def forward(self, hidden_states, previous_activations=None): if previous_activations is not None: self.preload_experts(previous_activations) identity = hidden_states orig_shape = hidden_states.shape topk_idx, topk_weight, aux_loss = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) flat_topk_idx = topk_idx.view(-1) outputs = [] activated_experts = set() for i in range(self.n_routed_experts): mask = (flat_topk_idx == i) if mask.any(): expert = self._get_expert(i) expert_output = expert(hidden_states[mask]) outputs.append((mask, expert_output)) activated_experts.add(i) self.update_activation_history(activated_experts) y = torch.zeros_like(hidden_states) for mask, expert_output in outputs: y[mask] = expert_output y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.view(*orig_shape) if self.config.n_shared_experts is not None: y = y + self.shared_experts(identity) return y, torch.tensor([1 if i in activated_experts else 0 for i in range(self.n_routed_experts)])
class DeepseekModel(DeepseekPreTrainedModel): def __init__(self, config: DeepseekConfig): super().__init__(config) # ...(其他初始化代码保持不变) self.layers = nn.ModuleList([DeepseekDecoderLayer(config, idx) for idx in range(config.num_hidden_layers)]) # 初始化并存储专家 self._init_and_store_experts() def _init_and_store_experts(self): for layer in self.layers: if isinstance(layer.mlp, DeepseekMoE): for i in range(layer.mlp.n_routed_experts): expert = layer.mlp._create_expert() expert_state = expert.state_dict() layer.mlp.expert_storage.save_expert(i, expert_state) # 清除内存中的专家 layer.mlp.expert_buffer.clear() def forward(self, input_ids, attention_mask=None, position_ids=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None): # ...(保持其他代码不变) previous_activations = None for idx, decoder_layer in enumerate(self.layers): # ...(保持其他代码不变) if isinstance(decoder_layer.mlp, DeepseekMoE): layer_outputs, current_activations = decoder_layer.mlp(layer_outputs, previous_activations) previous_activations = current_activations else: layer_outputs = decoder_layer.mlp(layer_outputs) # ...(保持其他代码不变) # ...(保持其他代码不变)
def train_expert_activation_predictors(model, dataset): activation_data = [] # 收集激活数据 model.eval() with torch.no_grad(): for batch in dataset: inputs = batch['input_ids'] outputs = model(inputs) activation_data.append(outputs.expert_activations) # 训练预测器 for layer in model.model.layers: if isinstance(layer.mlp, DeepseekMoE): layer_activation_data = [data[layer.mlp.layer_idx] for data in activation_data] layer.mlp.expert_predictor.train_predictor(layer_activation_data) # 使用示例 model = DeepseekForCausalLM.from_pretrained("path_to_your_model") dataset = load_your_dataset() # 加载数据集 train_expert_activation_predictors(model, dataset) # 保存训练后的模型 model.save_pretrained("path_to_save_model_with_predictors")
该实现提供了专家管理技术的基本框架,包括:
在实际应用中,可能需要进一步优化和调整,例如:
请注意,该实现增加了模型的复杂性,可能会影响推理速度。需要根据具体需求和硬件限制权衡预加载带来的好处和额外的复杂性。
OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目,目标是面向全场景、全连接、全智能时代,基于开源的方式,搭建一个智能终端设备操作系统的框架和平台,促进万物互联产业的繁荣发展。
©Copyright 2023 CCF 开源发展委员会 Powered by Trustie& IntelliDE 京ICP备13000930号
通过EdgeMoe 优化deepseek
首先,实现层次存储技术。通过修改现有代码,使非专家权重存储在设备内存中,而专家权重存储在外部存储中,仅在需要时加载到内存。实现步骤如下:
ExpertStorage
类来管理外部存储:DeepseekMoE
类以使用ExpertStorage
:DeepseekModel
类以支持专家的初始化和存储:DeepseekForCausalLM
类以确保在加载模型时正确处理专家:这些修改实现了以下功能:
该实现提供了层次存储的基本框架。在实际应用中,可能需要进一步优化,例如:
请注意,这些更改可能会影响模型的性能和内存使用。可能需要进行进一步的测试和优化,以确保在特定用例中达到最佳性能。
接下来,实现专家位宽自适应技术。该实现包括以下几个部分:
DeepseekMLP
类以支持量化权重:DeepseekMoE
类以使用量化后的专家:使用该实现,可以按以下步骤进行专家位宽自适应:
adaptive_quantization
函数确定每个专家的最佳量化位宽。示例:
该实现提供了专家位宽自适应的基本框架。在实际应用中,可能需要进一步优化和调整,例如:
请注意,该实现可能会显著增加模型的复杂性和训练/推理时间。需要根据具体需求和硬件限制权衡精度和效率。
最后,实现专家管理技术,包括以下几个部分:
DeepseekMoE
类以包含专家管理功能:DeepseekModel
类以支持专家管理:该实现提供了专家管理技术的基本框架,包括:
在实际应用中,可能需要进一步优化和调整,例如:
请注意,该实现增加了模型的复杂性,可能会影响推理速度。需要根据具体需求和硬件限制权衡预加载带来的好处和额外的复杂性。