目录
目录README.md

CGAN_jittor

A Jittor implementation of Conditional GAN (CGAN) on MNIST dataset.

Project Overview

This project implements a Conditional GAN (CGAN) model using Jittor deep learning framework. The generator takes random noise and a specified class label to generate a 32x32 MNIST-like digit image.

Requirements

  • Python 3.7+
  • Jittor >= 1.3.8.5
  • numpy
  • Pillow

Usage

1. Install dependencies

pip install jittor numpy Pillow

2. Train the CGAN model

python CGAN.py

3. Generate specific digit sequence images

After training, the model will automatically generate images for the sequence “28131342805930” and save it as result.png.

Notes

The dataset (MNIST) will be automatically downloaded by Jittor’s built-in dataset loader.

If the dataset or model files are too large, consider providing a Baidu Cloud download link.

License

This project is open-sourced for educational purposes.


关于

A Jittor implementation of Conditional GAN (CGAN) on MNIST dataset.

35.0 KB
邀请码
    Gitlink(确实开源)
  • 加入我们
  • 官网邮箱:gitlink@ccf.org.cn
  • QQ群
  • QQ群
  • 公众号
  • 公众号

©Copyright 2023 CCF 开源发展委员会
Powered by Trustie& IntelliDE 京ICP备13000930号