Unofficial demonstration of Huawei’s Pangu Weather Model. Implementing the entire process of data preparation for input, forecasting conversion of forecasted results, and visualization.
4. Download four pre-trained weights from [Pangu-Weather](https://github.com/198808xc/Pangu-Weather/tree/main#global-weather-forecasting-inference-using-the-trained-models) and create a folder named `models` to put them in. Feel free to download only one of them for testing purposes.
```bash
mkdir models
Forecasting
Modify the date_time of the initial field in data_prepare.py.
You may check the data availability at a specific moment by using test_avaliable_time.py.You would get something like this:
The latest date available for this dataset is: 2023-07-13 13:00.
Run data_prepare.py to download the initial field data and convert them to numpy array.
python data_prepare.py
Modify the following variables in inference.py according to your needs:
```python
6. After making the forecast, run `forecast_decode.py` to convert the numpy array back to NetCDF format
```bash
python forecast_decode.py
Navigate to the forecasting directory to visualize the results
cd outputs/2023-07-09-23-00to2023-07-17-23-00
# Visualize the land surface forecast
ncvue output_surface.nc
# Visualize the upper air forecast
ncvue output_upper.nc
Don’t forget to select the variable to be visualized.
Acknowledgement
Thanks Huawei team for their amazing meteorological forecasting model Pangu-Weather. Thanks mcuntz for his/her wonderful open-source NetCDF visualization project ncvue.
Warning
I am a Bioinformatics student, not a meteorologist, so I cannot guarantee the accuracy of the code. Therefore, this project is only intended for reference and learning purposes. Additionally, this project is based on Pangu-Weather and follows its BY-NC-SA 4.0 license, and should not be used for commercial purposes. Please cite the publication of Pangu-Weather.
@Article{Bi2023,
author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},
title={Accurate medium-range global weather forecasting with 3D neural networks},
journal={Nature},
doi={10.1038/s41586-023-06185-3},
}
@Article{Bi2023,
author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},
title={Accurate medium-range global weather forecasting with 3D neural networks},
journal={Nature},
doi={10.1038/s41586-023-06185-3},
}
Pangu-Weather-ReadyToGo
Unofficial demonstration of Huawei’s Pangu Weather Model. Implementing the entire process of data preparation for input, forecasting conversion of forecasted results, and visualization.
【非官方】华为盘古天气模型演示,含输入数据准备、预测结果转换及结果可视化全流程。中文指南
Installation and Preparation
~/.cdsapirc
file.GPU
pip install -r requirements_gpu.txt
CPU
pip install -r requirements_cpu.txt
conda install -c conda-forge cartopy
Forecasting
date_time
of the initial field indata_prepare.py
.data_prepare.py
to download the initial field data and convert them to numpy array.inference.py
according to your needs: ```pythonEnable GPU acceleration
use_GPU = TrueThe date and time of the initial field
date_time = datetime( year=2023, month=7, day=9, hour=23, minute=0)
The date and time of the final approaches
date_time_final = datetime( year=2023, month=7, day=17, hour=23, minute=0)
Program auto choose model to use least interation to reach final time
date_time
andfinal_date_time
of the initial field inforecast_decode.py
```pythonThe date and time of the initial field
date_time = datetime( year=2023, month=7, day=9, hour=23, minute=0)The date and time of the final approaches
date_time_final = datetime( year=2023, month=7, day=17, hour=23, minute=0)
Acknowledgement
Thanks Huawei team for their amazing meteorological forecasting model Pangu-Weather.
Thanks mcuntz for his/her wonderful open-source NetCDF visualization project ncvue.
Warning
I am a Bioinformatics student, not a meteorologist, so I cannot guarantee the accuracy of the code. Therefore, this project is only intended for reference and learning purposes. Additionally, this project is based on Pangu-Weather and follows its BY-NC-SA 4.0 license, and should not be used for commercial purposes. Please cite the publication of Pangu-Weather.
安装和准备工作
~/.cdsapirc
文件GPU
pip install -r requirements_gpu.txt
CPU
pip install -r requirements_cpu.txt
conda install -c conda-forge cartopy
预测Demo
data_prepare.py
中初始场的date_time
,data_prepare.py
下载初始场数据并转换为npy格式inference.py
中以下变量 ```python是否启用GPU加速
use_GPU = True初始场时刻
date_time = datetime( year=2023, month=7, day=9, hour=23, minute=0)
目标到达时刻
date_time_final = datetime( year=2023, month=7, day=17, hour=23, minute=0)
程式会自动选择最少到达目标时间的模型组合
forecast_decode.py
中初始场时刻和目标到达时刻forecast_decode.py
将npy转换回NetCDF格式感谢
华为团队开源的气象预测大模型 Pangu-Weather
mcuntz开源的优秀NetCDF可视化项目 ncvue
警告
本人专业为生物信息学,并非气象专业人士,无法保证代码完全准确,因此该项目仅供参考交流学习。另该项目系基于 Pangu-Weather,因此亦遵循原项目的BY-NC-SA 4.0开源许可证,切勿用于商业目的。使用本项目请引用原项目