目录

cgan_jittor

A Jittor implementation of Conditional GAN (CGAN). The MNIST dataset is automatically downloaded. Then we start to train the model. In each iteration, the images and class label pairs in the dataset are enumerated, a set of input vectors is randomly generated to calculate the generator and discriminator loss functions, gradients are returned, and the network parameters are updated. After the model is trained, given a set of specified digital sequences as input digital labels, an image would be generated by the model, saved to result.png.

Running Command: python CGAN.py

关于

A Jittor implementation of Conditional GAN.

29.0 KB
邀请码
    Gitlink(确实开源)
  • 加入我们
  • 官网邮箱:gitlink@ccf.org.cn
  • QQ群
  • QQ群
  • 公众号
  • 公众号

版权所有:中国计算机学会技术支持:开源发展技术委员会
京ICP备13000930号 京公网安备 11010802032778号