Update README.md
本项目是头歌平台jittor挑战赛热身赛的题目。 本项目使用 Jittor 深度学习框架,在数字图片数据集 MNIST 上训练一个将随机噪声和类别标签映射为数字图片的 Conditional GAN 模型,并生成指定数字序列对应的图片。
本项目需要安装jittor Jittor 框架目前支持 Linux 或 Windows(包括 WSL), mac 系统请安装虚拟机解决。 需要使用 Python 及 C++ 编译器(g++ 或 clang)。 Jittor 提供了三种安装方法: docker, pip 和手动安装,具体安装教程请参考: https://cg.cs.tsinghua.edu.cn/jittor/download/ 如果您跟我一样使用windows环境下的pip安装,则可以直接在命令行中运行以下命令: python --version python -m pip install jittor python -m jittor.test.test_core python -m jittor.test.test_example
python --version
python -m pip install jittor
python -m jittor.test.test_core
python -m jittor.test.test_example
在CGAN.py的第205行,定义了一个字符串变量number,这是在模型训练完成后,我们认为指定的要求模型输出的数字串。 您可以更改这个数字串,使得模型在训练完毕后会生成不同的图片。但要保证修改完后number还是一个数字串。 您可以在命令行中输入python CGAN.py来训练模型。 同时,模型还支持在命令行中更改参数,具体如下:
python CGAN.py
本项目可在头歌平台https://www.educoder.net/competitions/index/Jittor-4上测评。
我使用的licence为MIT。
A Jittor implementation of Conditional GAN (CGAN)
©Copyright 2023 CCF 开源发展委员会 Powered by Trustie& IntelliDE 京ICP备13000930号
CGAN_jittor
项目简述
本项目是头歌平台jittor挑战赛热身赛的题目。 本项目使用 Jittor 深度学习框架,在数字图片数据集 MNIST 上训练一个将随机噪声和类别标签映射为数字图片的 Conditional GAN 模型,并生成指定数字序列对应的图片。
安装方法
本项目需要安装jittor Jittor 框架目前支持 Linux 或 Windows(包括 WSL), mac 系统请安装虚拟机解决。 需要使用 Python 及 C++ 编译器(g++ 或 clang)。 Jittor 提供了三种安装方法: docker, pip 和手动安装,具体安装教程请参考: https://cg.cs.tsinghua.edu.cn/jittor/download/ 如果您跟我一样使用windows环境下的pip安装,则可以直接在命令行中运行以下命令:
python --version
python -m pip install jittor
python -m jittor.test.test_core
python -m jittor.test.test_example
运行方法
在CGAN.py的第205行,定义了一个字符串变量number,这是在模型训练完成后,我们认为指定的要求模型输出的数字串。 您可以更改这个数字串,使得模型在训练完毕后会生成不同的图片。但要保证修改完后number还是一个数字串。 您可以在命令行中输入
python CGAN.py
来训练模型。 同时,模型还支持在命令行中更改参数,具体如下:友情链接
本项目可在头歌平台https://www.educoder.net/competitions/index/Jittor-4上测评。
许可
我使用的licence为MIT。